Tianqi Wu (Clark University)

November 5, 2021

Koebe circle domain conjecture and the Weyl problem in hyperbolic 3-space

In 1908, Paul Koebe conjectured that every open connected set in the plane is conformally diffeomorphic to an open connected set whose boundary components are either round circles or points. The Weyl type problem, in the hyperbolic setting, asks for isometric embedding of surfaces of curvature at least -1 into the hyperbolic 3-space. We show that there are close relationships among the Koebe conjecture, the Weyl problem and the work of Alexandrov and Thurston on convex surfaces. This is a joint work with Feng Luo.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s